目前,通过加工脂肪、油和油脂(统称为“FOG”)生产的SAF已被视为一种成熟的生产路线,但预计原料供应量仅够满足2030年之前的需求³。2030年以后,乙醇制航空燃料(ETJ)和生物质制液体燃料(BTL)等其他SAF路线将成为下一批能够满足SAF需求的可行原料,其原因主要在于三方面:
1
2
3
低碳排放强度下原料的可用性
基础设施再利用的潜力
与氢气相比的结构价格优势
尽管氢气具备一些有吸引力的物理特性(例如:高比能、当配送网络成熟时具备极低生命周期排放潜力),但要实现商业化规模,还需要应对几个挑战:一是飞机燃料需要液态氢以满足操作和安全要求;二是液态氢的低体积能量与常规喷气燃料相比,需要约四倍的体积;三是现有飞机和配套基础设施(如压缩、管道和储存)需要扩充;四是氢液化需要新的投资。此外,其他难以减排的行业(如钢铁和水泥制造业)对氢燃料的争夺也可能会导致低CI.氢(即低碳氢/蓝氢和可再生氢/绿氢)的市场价格上涨。可再生氢的可用性可能会受到电解槽调试速度和电网脱碳速度的限制,后者也会受到其他行业电动化步伐的影响,导致电力总需求增加。虽然FOG工艺从技术角度看已经成熟,但内部分析表明,其原料供应量仅能满足2030年之前的需求。为了让SAF作为航空脱碳载体被广泛应用,增加低CI的产量至关重要。在使用当前原料和当前农业工艺的情况下,要满足未来的SAF需求,需要将用地数量增加至原来的两倍。然而,随着农业实践的不断发展和利用糖或生物质作为原料的下一代生产路线的不断改进(例如ETJ和BTL),未来对产量和降低CI.方面的需求都可以得到解决。因此,满足SAF增量需求所需的额外用地预计将远少于第一代原料生产所需的用地。
糖和生物质原料都比FOG更丰富。根据美国能源部生物能源技术部门的一项研究,美国每年能够以可持续的方式收集大约10亿千吨的生物质,这些生物质可以转化为超过500亿加仑(约1900亿升)的低CI.燃料⁵(可减少80%-94%碳排放)。此类生物质资源包括木材加工废料、农业和林业残留物、专用能源作物、油籽和城市固体废物流等。这些原料加在一起可以满足美国航空业和其他运输方式对普适性低碳燃料的燃料需求,同时还可用于生产高价值的生物产品和可再生化学品。用于SAF生产的生物质作物可以在农闲季节种植,帮助农民赚取额外收入、减少土壤养分损失、改善土壤和水质,并有助于控制土壤侵蚀。
前述生物质中的一部分已经转化为乙醇,用于美国国内燃料消费。美国种植的玉米大约有40%用于生产混合燃料中的乙醇(年产能超过175亿加仑,其中11亿加仑为过度生产”。随着电动汽车的不断普及,还将有更多的乙醇通过乙醇制航空燃料(ETJ)工艺被转化为航空燃料。根据爱迪生电气研究所和国际能源署的数据,到2030年,电动汽车将占到美国公路轻型车辆总数的10%左右(约2700万辆°,当前为130万辆”)。此外,《企业平均燃油经济性标准》(CAFE标准)对于车辆每加仑燃料必须行驶的里程数也有相关规定。该标准未来将提出更高的燃油效率要求,并将导致汽油需求的下降。假设减少10%的汽油需求,那么到2030年,每年将释放出约16亿加仑的原料产能用于生产航空燃料。
本文来自知之小站
PDF完整报告已分享至知识星球,微信扫码加入立享4万+最新精选报告
(星球内含更多专属精选报告.其它事宜可联系zzxz_88@163.com)
