固态电池设备行业深度:驱动因素、市场现状、发展展望及相关公司深度梳理
固态电池具备高能量密度&高安全性,未来应用场景广阔。固态电池与液态电池的本质区别在于电解质的形态,全固态电池具备高能量密度、高安全性等优势,当前半固态电池开启规模化装车,全固态电池预计2027年开始小批量上车,2030年后规模化应用于储能领域,低空经济&人形机器人也有望打开应用空间。
全固态电池干法工艺为主线,打开设备全新需求空间。前道、中道、后道均有变化:前段变化最大,主要在于电解质膜和极片制作工艺上,全固态电池干法工艺增加了干法混合、干法涂布环节实现固态电解质膜制备,不再需要使用溶剂,也不存在烘干环节:全固态电池湿法工艺仍然保留了利用溶剂制备电解质与粘结剂溶液后涂布蒸干制备电解质膜的工序。中段电芯装配环节:全固态电池采用“叠片+极片胶框印刷+等静压技术”取代传统的液态电池卷绕工艺,并删减了注液工序:后段化成分容环节:从液态电池化成分容转向全固态电池所需的高压化成分容。
以下我们聚焦固态电池设备行业,对相关问题展开分析梳理。首先我们将从固态电池发展必要性、设备行业发展的驱动因素、市场现状三部分对固态电池设备行业发展的当下环境及市场现状进行分析。其次,我们将从工艺设备层面,对固态电池设备的技术革新及行业延伸出来市场机遇进行分析。最后我们将对部分相关企业市场发展情况及行业后续发展走向进行分析,希望对大家了解固态电池设备行业有所启发。
1、传统锂电池三大核心痛点制约产业升级
电池当前瓶颈之一:能量密度局限,直接影响续航。锂离子电池能量密度定义为电池单位质量可释放的电能。受限于当前材料体系的物化性质,传统的锂电池能量密度已逐步逼近上限。能量密度直接决定电池的轻量化水平和续航能力——因此更高的能量密度意味着在同等质量或体积下可存储更多电能,从而显著优化终端应用使用体验(如电动交通工具减重降耗、消费电子轻薄化)。在未来,电动交通工具和消费电子对电池续航的要求将会进一步提升,能量密度将成为电池市场应用的长期关注点。
能量密度优化路径分电极材料和结构优化两条路径。根据《Strategies toward the development ofhigh-energy-density lithium batteries》报告,提升电池能量密度意味着电池质量体积减少,同时储存电能增大。因此,优化能量密度的两条路径为:提升电极的比容量,比容量定义为单位质量的活性材料能放出的最大容量,提升电极比容量可提升电极单位质量的容量,因此电池在相同的质量的情况下,电极可放出的电量将有效提升,从而实现电池能量密度的提升。例如采用硅碳负极、高镍三元正极是当前比较有效的提升电池体系能量密度的措施。优化电池结构,合理优化电池内部组分的结构占比,例如采用固态电解质优化掉隔膜和电解液,合理调控各个组分的重量和厚度,可以使电池在有限的质量下放出更多的能量。当前固态电解质+硅碳/锂金属负极+高镍三元是锂电行业向高能量密度技术迭代的首选方案。电池当前瓶颈之二:安全性痛点凸显,液态电解质体系成风险根源。锂离子电池的电解液的主要成分为可燃烧的有机物碳酸酯类(一般包括EC、PC、DMC等),在较高温度会发生热失控,碳酸酯类电解液的燃点通常较低,在小于200℃下很容易发生燃烧,电池在发生碰撞、使用老化等情况下,液态电解质体系的隔膜将会被机械外力或者锂枝晶刺穿,导致电池短路热失控,电解液发生泄露、燃烧。动力电池有更多的活性物质的质量和更高的充放电功率,且电池包处在相对密封环境,发生内部燃烧容易导致剧烈爆炸等危害,受到重点关注。电池当前瓶颈之三:快充性能不足,影响使用效率。锂电应用场景中,消费领域和动力领域对快充要求较高。充电速率决定了电池的使用效率,锂电池的充电倍率提升意味着短时间可以充电更多的电量。根据《Fast Charging Lithium Batteries:Recent Progress and Future Prospects》报告,电池存在活化阻抗、欧姆阻抗、扩散阻抗,这体现在电化学反应动力学机理层面,对快充性能起决定作用的是电池的内部阻抗。电池在大功率充电时,锂离子大量插层、迁移,需要电池体系较小的阻抗保证锂电池容量的相对稳定。《Solid electrolyte interphases in lithium metal batteries》报告指出,在快充时,锂离子迁移速率受电解液扩散阻抗和电极界面阻抗限制,易导致负极析锂和SEI膜损伤。正极和负极扩散阻抗、负极过电位析锂风险及电解液SEI膜界面损伤演化是快充性能的主要制约,需通过材料改性和工艺优化等方向缓解,核心在于降低电池的欧姆阻抗、电化学阻抗、扩散阻抗。
2、固态电解质:具有颠覆性突破的电池技术,满足主流需求
固态电池指的是锂电池中采用固态电解质的电池。电池中电解质的主要作用是传输锂离子,同时隔绝电子的通过。在充放电过程中,锂离子在不同电位下表现为穿过电解质和隔膜对正极和负极的嵌入/脱嵌的趋势来实现能量的存储和释放。固态电池采用固态的电解质替换了传统的液态电解质,作为传输锂离子的介质,固态电池和传统液态电池具有相同的电化学原理。固态电池可提升电池安全性。当前电池的安全问题主要集中在电解液的易燃、泄露等问题,由于固态电解质的燃点高、固态电解质不流动,因此固态电解质有着穿刺不起火、不泄露电解质、不燃烧的优势,固态电解质可从根本上解决电解液带来的安全性问题,大幅提升电池安全性。
固态电池在能量密度方面具有颠覆性优势。固态电解质替换了传统的电解液和传统隔膜,可以使电芯更加轻薄。因此在相同质量的电池中,可以放入更多的活性电极材料,固态电池能量密度可以突破当前的极限(300Wh/kg),已有企业制成能量密度500+Wh/kg的电池样品,固态电池的应用有望大幅提升电动的续航水平并降低充电频率。
本文来自知之小站
PDF完整报告已分享至知识星球,微信扫码加入立享4万+最新精选报告
(星球内含更多专属精选报告.其它事宜可联系zzxz_88@163.com)
